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Abstract

Many reactor components including fuel assembly, heat exchanger tubes and control element assembly
are typically beam-type structures with either classical or nonclassical boundary conditions, or both. In
such cases, it is quite difficult to evaluate the vibration characteristics of the structures since methods for
calculating accurate natural frequencies of those structures with complicated restraints are not generally
available. In this study, the frequency equations for calculating the natural frequencies of the beams with
generally restrained boundary conditions by both translational and rotational springs are derived in the
matrix form using Fourier sine series. In order to show the validation of the solution, numerical results for
two degenerate cases are compared with the existing results for natural frequency obtained by the
conventional analysis. And as a specific application, the natural frequencies of fuel rod for Korean
Standard Nuclear Plant (KSNP) fuel assembly are calculated and compared with the external excitations.
As a result, the frequency equation derived by present paper seems to be very useful to evaluate the fuel rod
vibration with various boundary conditions. Especially, when some parametric analyses are needed to
modify fuel design, the equation can be applied very easily.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The fuel assembly for a typical pressurized water reactor (PWR) plant (see Fig. 3) is operated
under severe operating conditions such as high temperature, high pressure and massive coolant
passing through the fuel assembly with high speed. Therefore, the fuel assembly should be
designed not only to sustain its structural integrity under all of the operating conditions including
the most serious postulated accidents like seismic and loss of coolant accident (LOCA) events, but
also to ensure that the natural frequencies of the fuel are mismatched with all of the external
excitation frequencies during the operation. In general, three sources of external excitation are
recognized in evaluating the fuel rod susceptibility to vibration damage. Those are reactor coolant
pump blade passing frequencies, vortex shedding frequencies, and lower support structure
motion. In order to prevent fuel failure due to the external excitation, fuel rods are supported by
multiple spacer grids, which carefully decided the number and spacing under consideration of
vibration modes, with appropriate spring forces along its length. In the fuel rod vibration, there
are a number of possible combinations of neighboring span effects according to supporting
conditions of the spacer grids and pellet/cladding contact effects according to progress of burn-up.
Furthermore, because the vibration of the fuel rod is quite sensitive to those effects explained
above, it is very difficult to evaluate the natural frequencies of the fuel rod and to verify that none
of these frequencies matches the frequencies of external excitation.
For the fuel rod vibration problem, dynamic characteristics of fuel rod for PWR fuel assembly

have been estimated through vibration tests with the fuel rods actual boundary conditions but
analytical results of the problem have rarely been reported. However, numerous studies, which
can be applicable to vibration analysis of complicated structure like fuel rod, have been carried
out for various cases. The brief presented component mode method based on Fourier series for
vibration of structures by using Lagrange’s equations and Lagrange multipliers based on the
discrete technique of component mode analysis. In the analyses, mode shapes are written in terms
of Rayleigh–Ritz expansions involving simple Fourier sine or cosine series for each of the
component [1,2]. Chung presented a solution method for calculating the natural frequencies and
modes of beams with any of the classical boundary conditions and with unlimited intermediate
supports by using Fourier series in conjunction with Lagrange multipliers. In this paper, he solved
various beam problems having intermediate supports, but just considered the beams with classical
boundary conditions [3]. And the applicability of Fourier series to the dynamic analysis of beams
with arbitrary boundary conditions was studied by Wang [4]. He derived the frequency equation
for a simply supported beam with rotational restraints at both ends by using Fourier sine series.
In this study, in order to establish a methodology which makes it possible to analyze the

dynamic characteristics of the structures like nuclear fuel assembly and fuel rods including
complicated factors concerned with elastic restraints, intermediate support, elastically attached
masses, etc., the general frequency equation for calculating the natural frequencies of the double
span beam with generally restrained boundary conditions is derived in the matrix form using
Fourier series. In order to show the validation of the equation, numerical results for two
degenerate cases are compared with existing results shown in literatures. And then as a specific
application, a numerical analysis on the fuel rod for a typical Korean PWR fuel assembly has
been performed and compared with external excitation. The results showed that none of the
natural frequencies of the considered fuel rod matches with external excitation.
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2. General theoretical formulations

Let us consider a uniform Bernoulli–Euler double span beam with elastically restrained
boundary conditions as shown in Fig. 1. The equation of motion for free flexural vibrations of a
double span uniform elastic beam ignoring shear deformation and rotary inertia effects is

EI
q4wiðx; tÞ

qx4i
þ rA

q2wiðx; tÞ

qt2
¼ 0 ði ¼ 1; 2Þ; (1)

where wiðx; tÞ is the lateral displacement at distance x along the length of the beam and time t; EI
is the flexural rigidity of the beam, r is the mass density and A is the cross-sectional area of the
beam.
For any mode of vibration, the lateral displacement wiðx; tÞ may be written in the form

wiðx; tÞ ¼ ciðxÞ cos ot ði ¼ 1; 2Þ; (2)

where ciðxÞ is modal displacement function and o is the natural frequency. The function ciðxÞ
may be written either as a Fourier sine series or cosine series. In the present study, let us consider a
Fourier sine series as a mode function. Since direct differentiation of a Fourier sine series leads to
a cosine series without the constant term, it is not considered to be a complete set of functions.
The function is defined in two separate regions, one for boundary points and the other for the
intermediate region between the boundary points as follows:

ciðxÞ ¼

ci0; x ¼ 0;

ciL; x ¼ L;P1
m¼1

Aim sin
mpx

L
; 0oxoL:

8>>><
>>>:

ði ¼ 1; 2Þ: (3)

To obtain the correct series expressions for derivatives of a Fourier series, Stoke’s
transformation must be employed. Stoke’s transformation consists of defining each derivative
with an independent series and integrating the newly defined series by parts to obtain the
relationship between the Fourier coefficients [2–4].
Fig. 1. An elastic double span Bernoulli–Euler beam with rotational and translational restraints.
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The derivatives of ciðxÞ based on the usual definitions of Fourier series become

dciðxÞ

dx
¼

ciL � ci0

L
þ
X1
m¼1

2

L
fciLð�1Þ

m
� ci0g þ amAm

� �
cos amx; 0pxpL; (4)

where am ¼ mp=L and subscript i ¼ 1; 2:

d2ciðxÞ

dx2
¼ �

X1
m¼1

am

2

L
fciLð�1Þ

m
� ci0g þ amAm

� �
sin amx; 0oxoL; (5)

c00

i0 ¼ c00

i ð0Þ; c00

iL ¼ c00

i ðLÞ;

d3ciðxÞ

dx3
¼

c00

iL � c00

i0

L
þ
X1
m¼1

2

L
fc00

iLð�1Þ
m
� c00

i0g � a2m
2

L
fciLð�1Þ

m
� ci0g þ amAm

	 
� �


 cos amx; 0pxpL ð6Þ

and

d4ciðxÞ

dx4
¼ �

X1
m¼1

am

2

L
fc00

iLð�1Þ
m
� c00

i0g � a2m
2

L
fciLð�1Þ

m
� ci0g þ amAm

	 
� �


 sin amx; 0oxoL: ð7Þ

The function can also be represented by Fourier cosine series in a similar manner.
In order to obtain a general expression for the flexure of beams, let us substitute Eqs. (5) and (7)

into Eq. (1). Then, we can get the displacement function for the free vibration of double span
beam having no geometrical constraints at both ends as follows:

wiðx; tÞ ¼
X1
m¼1

2

a3mL

o2n
o2 � o2n

fðc00

i ð0Þ � ð�1Þmc00

i ðLÞÞ � a2mðcið0Þ � ð�1ÞmciðLÞÞg


 sin amx cos ot ði ¼ 1; 2Þ; ð8Þ

where

Aim ¼
X1
m¼1

2

a3mL

o2n
o2 � o2n

fðc00

0 � ð�1Þmc00

LÞ � a2mðc0 � ð�1ÞmcLÞg; o2n ¼
EI

rA
a4m: (9)

The elastically restrained boundary conditions of the beam shown in Fig. 1 are as follows:

T 0w1ð0Þ ¼ �EI
q3w1ð0Þ

qx3
; R0

qw1ð0Þ

qx
¼ EI

q2w1ð0Þ

qx2
at x1 ¼ 0; (10,11)

TLw2ðLÞ ¼ EI
q3w2ðLÞ

qx3
; RL

qw2ðLÞ

qx
¼ �EI

q2w2ðLÞ

qx2
at x2 ¼ L; (12,13)

w1ðL1Þ ¼ w2ðL1Þ;
qw1ðL1Þ

qx
¼

qw2ðL1Þ

qx
at x1 ¼ L1; (14,15)
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EI
q2w1ðL1Þ

qx2
¼ Ra

qw1ðL1Þ

qx
þ EI

q2w2ðL1Þ

qx2
;

EI
q3w1ðL1Þ

qx3
¼ Taw1ðL1Þ þ EI

q3w2ðL1Þ

qx3
at x1 ¼ L1 ð16; 17Þ

in which T 0; Ta and TL are translational spring constants, and R0; Ra and RL are rotational spring
constants at x1 ¼ 0;L1 and L; respectively. Substitution of Eq. (3) and its derivatives into Eqs.
(10)–(17) leads to the homogeneous matrix equation

½SSij�fc
00

10;c
00

1L;c10=L2;c1L=L2;c00

20;c
00

2L;c20=L2;c2L=L2
g
T
¼ f0g ði; j ¼ 1; 2; 3; 4; 5; 6; 7; 8Þ: (18)

For nontrivial solution the determinant of the coefficient matrix of Eq. (18) must vanish, i.e.

jSSijj ¼ 0 ði; j ¼ 1; 2; 3; 4Þ: (19)

From the determinant, frequency equation of an elastic double span Bernoulli–Euler beam with
rotational and translational restraints is obtained. Each element of the SS determinant is shown in
Appendix A.
3. Degenerate case

A typical degenerate case is considered to show that the determinant derived in this study can
be applied to classical boundary conditions and nonclassical boundary conditions can be
restrained by general springs.

3.1. Single span beam with translational and rotational spring restraints at both ends

In this case, since there is no intermediate support, the boundary conditions can be written with
Eqs. (10)–(13). The frequency equation for this case can be easily given from the frequency
equation for double span beam by deleting columns and rows for the intermediate support. Then
the resultant frequency equation is given as

jSijj ¼

SS11 SS12 SS13 SS14

SS21 SS22 SS23 SS24

SS35 SS36 SS37 SS38

SS45 SS46 SS47 SS48

���������

���������
¼ 0 ði; j ¼ 1; 2; 3; 4Þ: (20)

3.2. CC beam with an intermediate translational spring restraint

For a CC (clamped–clamped) beam with an intermediate translational spring restraint as
shown in Fig. 2, the resulting boundary conditions are

w1ðL1Þ ¼ w2ðL1Þ;
qw1ðL1Þ

qx
¼

qw2ðL1Þ

qx
at x1 ¼ L1;
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q2w1ðL1Þ

qx2
¼

q2w2ðL1Þ

qx2
; EI

q3w1ðL1Þ

qx3
¼ Taw1ðL1Þ þ EI

q3w2ðL1Þ

qx3
at x1 ¼ L1;

w1ð0Þ ¼ 0;
qw1ð0Þ

qx
¼ 0 at x1 ¼ 0;

w2ðLÞ ¼ 0;
qw2ðLÞ

qx
¼ 0 at x2 ¼ L: (21)

Substitution of Eq. (3) and its derivatives into Eq. (15) leads to the eight simultaneous
homogeneous equations as follows:

½CTCij�fc
00

10;c
00

1L;c10=L2;c1L=L2;c00

20;c
00

2L;c20=L2;c2L=L2
g
T
¼ f0g ði; j ¼ 1; 2; 3; 4; 5; 6; 7; 8Þ: (22)

In order to have nontrivial solution, the determinant of the coefficient matrix must vanish, i.e.

jCTCijj ¼ 0 ði; j ¼ 1; 2; 3; 4; 5; 6; 7; 8Þ: (23)

Or theoretically we can get same result from Eq. (19) by just putting T̄ 0; R̄0 ! 1; R̄a ! 0
and T̄L; R̄L ! 1 instead of Eq. (23). The elements of this CTC determinant are shown in
Appendix B.
4. Frequency equations of PWR fuel rod

4.1. Description of PWR fuel rod

The fuel rods consist of slightly enriched UO2 cylindrical ceramic pellets, a round wire Type 302
stainless-steel compression spring, and an alumina spacer disc located at the lower end of the fuel
column, all encapsulated within a Zircaloy-4 cladding tube seal welded with Zircaloy-4 end caps
as shown in Fig. 3. The fuel rods are supported by 11 spacer grids along the length. The number
and spacing of grids must ensure that the natural frequencies of unsupported lengths of fuel rods
are significantly mismatched with the expected excitation frequencies. Three sources of external
excitation are recognized in evaluating the fuel rod susceptibility to vibration damage. These
sources are as follows:
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Fig. 3. KSNP fuel assembly.
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Reactor coolant pump blade passing frequencies: Comprehensive vibration assessment programs
on Korean Standard Nuclear Plant (KSNP) reactors indicate that peak pressure pulses are
expected at the pump blade passing frequency.

Vortex shedding frequencies: The vortex shedding frequencies at the various elevation of the fuel
assembly are listed in Table 1 [5].

Lower support structure motion: Random lateral motion between the fuel assembly and the
lower support structure is expected to occur with an amplitude in the some frequency ranges.
Because there are a number of possible combinations of neighboring span effects according to

pellet/cladding contact effects and supporting conditions, the natural frequency of fuel rod should
be investigated to cover a number of possible modes. And then it should be verified that none of
these frequencies matches the frequencies of external excitation. There are three possible contact
configurations between pellet and cladding as follows:

Case A. No contact: This configuration applies for all rods at the beginning-of-life (BOL) and
throughout fuel life in the plenum region. The frequency of fuel rod vibration depends on that of
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Table 1

Typical normalized external excitation frequencies of a KSNP reactor

External excitation sources Normalized frequencies

Reactor coolant pump blade passing frequencies 10,20,60,120, 180,240

Vortex shedding

Uppermost rod end

Top grid span 1.5,7

Intermediate grid span

Lower grid span 1.5,3.5,4,7,12

Lowermost end 8.5,9.5,18,20,63.5,71

Lower support structure motion 1,2,3,4,5

H.K. Kim, M.S. Kim / Journal of Sound and Vibration 282 (2005) 553–572560
cladding alone.

:

Case B. Line contact: This configuration occurs after temperature and pressure effects have
caused the cladding to contact the pellets in an oval configuration. Since there is no complete
contact between pellets and cladding, pellets are not assumed to contribute to rod stiffness.
However, the mass of the pellet is assumed to be carried by the rod in lateral vibration and is thus
included in the calculated frequency.

:

Case C. Hard contact: Late in fuel life, except in low fluence regions, the pellets have expanded
due to irradiation, to the point where they contribute both to their mass and rigidity to a vibrating
rod.

:

The fuel rods are restrained from axial and lateral motions by the forces of the spacer grid leaf
springs and arches being located 11 points along the length of fuel rod as shown in Fig. 3.
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4.2. Frequency equations of fuel rod

To investigate the integrity of fuel rod under external excitation loads, natural frequencies for
all feasible combinations of vibration modes and pellet to cladding contact configurations
explained previous section should be calculated. The applicable vibration modes to fuel rod are
shown in Table 2. All of the vibration modes can be expressed easily by the frequency equation
being derived in previous section, as follows:
For Mode I:

jSSijj ¼ 0 ði; j ¼ 1; 2; 3; 4; 5; 6; 7; 8Þ; where R̄0 ¼ R̄a ¼ R̄L ¼ 0 and T̄ 0 ¼ T̄a ¼ T̄L ¼ 1:

For Mode II:

jSijj ¼ 0 ði; j ¼ 1; 2; 3; 4Þ; where T̄ 0 ¼ T̄L ¼ 1 and R̄0 ¼ R̄L ¼ 0:

For Mode III:

jSijj ¼ 0 ði; j ¼ 1; 2; 3; 4Þ; where R̄0 ¼ 0 and R̄L ¼ 0:

For Modes IV and VII, the lumped mass effect can be implemented by replacing T̄L with �M̄O
as Eq. (24).

1þ 2
X1
m¼1

ð�1ÞmO
O� m4

 !
�M̄ðp4OÞ þ 2p2

X1
m¼1

m2O
O� m4

 !

1�
2R̄0

p2
X1
m¼1

m2

O� m4

 !
� R̄0 þ 2R̄0

X1
m¼1

ð�1ÞmO
O� m4

 !
�����������

�����������
¼ 0; (24)

where M̄ ¼ MðrALÞ:
Here the modes for Modes IV and VII can be obtained from Eq. (19) by letting R̄0 ¼ 0 and

R̄0 ¼ 1; respectively.
For mode V, the frequency equations are shown in the previous degenerate case.

jCTCijj ¼ 0; ði; j ¼ 1; 2; 3; 4; 5; 6; 7; 8Þ:

For Mode VI:

jSijj ¼ 0; ði; j ¼ 1; 2; 3; 4Þ where T̄ 0 ¼ T̄L ¼ 1 and R̄0 ¼ R̄L ¼ 1:

For Mode VIII:

jSijj ¼ 0; ði; j ¼ 1; 2; 3; 4Þ where R̄0 ¼ 1; K̄0 ¼ 1; K̄L ¼ 1 and R̄L ¼ 0:

The fuel rod can be divided into five parts according to its properties as follows:
�
 Uppermost rod end: Upper end of fuel rod would be vibrating per Modes A-IV and A-VII.

�
 Top grid span: Because the top span consists mostly of plenum region and a low fluence pellet
region, pellet interaction effects with cladding are not considered. Fuel rods would be vibrating
under Modes A-II, A-III and A-VIII.
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Table 2

Vibration modes of fuel rod

Case Mode Application

I Intermediate grid span

Lower grid span

II Top grid span

Intermediate grid span

Lower grid span

III Top grid span

Intermediate grid span

Lower grid span

IV Uppermost rod end

Lowermost rod end

V Intermediate grid span

Lower grid span

VI Top grid span

Intermediate grid span

Lower grid span

VII Lowermost rod end

VIII Top grid span

Lower grid span

H.K. Kim, M.S. Kim / Journal of Sound and Vibration 282 (2005) 553–572562
�
 Intermediate grid spans: These spans are uniform in cross section, but would be vibrating
together or independently due to different rates of pellet swelling, grid relaxation or cross flow
of reactor coolant. Thus pellet/cladding configurations A, B or C can combine with vibration
Modes I–VI.
�
 Lower grid span: The lower span would be vibrating under Modes I–VIII. And the pellet/
cladding configurations A, B or C should be combined with the modes.
�
 Lowermost rod end: As in the case of the uppermost end, the lower end span would be vibrating
under Modes VII because of its high constraint condition. In addition, because of the lower
fluences in the lower end of the rods, no hard contact is considered.
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5. Numerical analysis
Numerical investigation has been performed to confirm the validity of the present formulation
for an elastic double span Bernoulli–Euler beam with rotational and translational restraints as
well as typical classical boundary conditions. However, in this paper, the results on the two
degenerate cases are represented as follows.
5.1. CC beam with an intermediate translational spring restraint

The eigenvalues of the CC (clamped–clamped) beam with an intermediate translational spring
restraint as shown in Fig. 3 are provided in Table 3. And Fig. 4 shows the two- and three-
dimensional plots of the Table 3. Fig. 4 shows very good agreement with Fig. 2 of Ref. [6] which is
an analytical solution from the frequency equation derived by solving the governing equation
exactly and invoking boundary conditions and continuity conditions. Fig. 5 shows a typical plot
of the frequency parameter for the CC beam with an intermediate translational spring restraint.
The sensitivity of the terms in this problem has been investigated for the case of x ¼ 0:1; T̄a ¼ 100:
Fig. 6 shows the sensitivity of the number of terms in the series. It has been shown that the first 50
terms will be enough to get the desirable accuracy. But, the values of Table 3 have been obtained
using the first 100 terms of the infinite series based on the result of the sensitivity study which
bring a converged value at 100 terms. As shown in Fig. 4, the dimensionless translational spring
parameter T̄a is highly transcendental in nature and the effect of increasing the parameter T̄a is to
increase the frequency parameter b: And it is interesting to notice the fact that when the parameter
T̄a reaches 2E3, the natural frequencies of the beam reach a nearly saturated value. All of these
calculations have been performed with Mathematica.
Table 3

The 1st natural frequency parameter ðbÞ for CC beam with an intermediate translational spring restraint

T̄a x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 4.74948 4.74948 4.74948 4.74948 4.74948 4.74948 4.74948 4.74948 4.74948 4.74948 4.74948

10 4.74948 4.75034 4.75845 4.77721 4.79816 4.80738 4.79816 4.77721 4.75845 4.75034 4.74948

100 4.74948 4.75793 4.83169 4.99012 5.16452 5.24382 5.16452 4.99012 4.83169 4.75793 4.74948

200 4.74948 4.76593 4.89988 5.16918 5.46753 5.61137 5.46753 5.16918 4.89988 4.76593 4.74948

300 4.74948 4.77351 4.96716 5.30738 5.70093 5.90437 5.70093 5.30738 4.96716 4.77351 4.74948

400 4.74948 4.78070 5.00602 5.41689 5.88627 6.14732 5.88627 5.41689 5.00602 4.78070 4.74948

500 4.74948 4.78753 5.04809 5.50549 6.03635 6.35410 6.03635 5.50549 5.04809 4.78753 4.74948

1E3 4.74948 4.81710 5.19290 5.77295 6.48201 7.06854 6.48201 5.77295 5.19290 4.81710 4.74948

1.5E3 4.74948 4.84071 5.27740 5.90444 6.68662 7.50056 6.68662 5.90444 5.27740 4.84071 4.74948

2E3 4.74948 4.85997 5.33249 5.98138 6.79740 7.79601 6.79740 5.98138 5.33249 4.85997 4.74948

5E3 4.74948 4.92727 5.46491 6.14124 6.99890 7.88459 6.99890 6.14124 5.46491 4.92727 4.74948

1E4 4.74948 4.97212 5.52220 6.20080 7.06311 7.88535 7.06311 6.20080 5.52220 4.97212 4.74948

1E6 4.74948 5.04517 5.58756 6.26269 7.12366 7.88535 7.12366 6.26269 5.58756 5.04517 4.74948

1E8 4.74948 5.04613 5.58826 6.26332 7.12425 7.88535 7.12425 6.26332 5.58826 5.04613 4.74948
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Fig. 5. The plot of frequency parameter for the CC beam with an intermediate restraint.

Fig. 4. The fundamental frequency parameter of the CC beam with an intermediate translational spring restraint:

(a) two dimensional; (b) three dimensional.

H.K. Kim, M.S. Kim / Journal of Sound and Vibration 282 (2005) 553–572564
Besides, the cases presented the results in this paper, the various degenerate cases have been
investigated and showed good agreement with the previous results [7,8]. The results were shown in
the author’s previous paper [9].
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Fig. 6. The sensitivity of the number of terms.
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5.2. A PWR fuel rod with various vibration modes

Using the frequency equations explained in previous sections, the natural frequencies of each
fuel rod span have been evaluated and provided in Table 4. The natural frequency of a fuel rod
span changes as a function of time in core, for example, the normalized natural frequency in Case
A-I & II at an intermediate span, which means the condition at BOL, f̄ n ¼ 45; after a time in core
and because some ovality exists f̄ n ¼ 21:85 or 21.5 and after fuel pellets have completely swollen
such that hard contact results f̄ n ¼ 46:5: Parameters such as cladding tolerance, strip thickness of
grids, time in life and fixity have a measurable effect on a span’s natural frequency.
The hydraulic induced vibration, vortex shedding would not produce fretting in the cladding

from contact with spacer grids because at the lower rod end normalized vortex shedding
frequency is 63.5 to 71 where normalized rod frequencies are 217.45, 221.15 or 330.8.
As can be seen in Tables 1 and 4, most of the normalized natural frequencies do not match with

sources frequencies except some frequencies, e.g., 20.6, 21 or 21.5 vs. 20 normalized pump blade
passing frequency. However, in this calculation damping factors, which can be observed in the
fuel assembly structural tests, are not considered, so the actual magnification factor should be
small.
It is very difficult and tedious to analyze the dynamic characteristics of beams with various

vibration modes including the nonclassical boundary conditions as well as the change of the
mechanical characteristics of the structure like fuel rod. However, the frequency equation derived
in present paper can be easily applicable to those structures by simply introducing the boundary
conditions of the structure to the equations, as shown in numerical analysis on the fuel rod
vibration. And as the equation has been derived using Fourier series, it is also very easy to control
the accuracy of the solutions by controlling the number of terms.
6. Conclusions

The frequency expressions for double span Bernoulli–Euler beams with generally restrained
boundary conditions have been presented by using Fourier series as a mode function. The
expressions are quite general since identical Fourier series expressions may be used for many
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Table 4

Calculated fuel rod frequency parameters and corresponding normalized natural frequencies

Fuel rod span Modes Frequency parameter b Normalized natural frequencies

Uppermost rod end A-IV 3.3507 4273.90
A-VII 1.3977 743.65

Top grid span A-II p 45.00
A-III 3.07692 43.15
A-VIII 3.92819 70.35

Intermediate grid span A-I & II p 45.00
B1-I & II p 21.85
B2-I & II p 21.50
C-I & II p 46.50
A-III 3.07692 43.15
B1-III 3.07692 21.00
B2-III 3.07692 20.60
C-III 2.87232 39.00
A-V 7.88520 70.85
B1-V 7.88520 34.45
B2-V 7.88520 33.35
C-V 7.88520 73.45
A-VI 4.73004 102.00
B1-VI 4.73004 49.50
B2-VI 4.73004 48.70
C-VI 4.73004 105.60

Lower grid span A-I 6.26651 49.00
B1-I 6.26651 23.85
B2-I 6.26651 23.45
C-I 6.26651 50.80
A-II p 54.25
B1-II p 26.40
B2-II p 25.95
C-II p 56.25
A-III 3.05943 51.50
B1-III 3.05943 25.00
B2-III 3.06200 24.65
C-III 2.80812 44.95
A-V 7.60887 72.30
B1-V 7.60887 35.15
B2-V 7.60887 34.55
C-V 7.60887 74.95
A-VI 4.73004 123.00
B1-VI 4.73004 59.80
B2-VI 4.73004 58.80
C-VI 4.73004 127.50
A-VIII 3.92819 84.85
B1-VIII 3.92819 41.25
B2-VIII 3.92819 40.55
C-VIII 3.92819 87.95

Lowermost rod end A-VII 1.48283 330.80
B1-VII 1.73904 221.15
B2-VII 1.73904 217.45

A: No contact; B1: Line contact (based on minor axis); B2: Line contact (based on major axis); C: Hard contact.
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different physical problems like beams, columns, strings, plates and shells with both classical and
nonclassical boundary conditions.
The hydraulic-induced vibration, vortex shedding would not produce fretting in the KSNP fuel

rods because at the lower rod end normalized vortex shedding frequency is 63.5–71 where
normalized rod frequencies are 217.45, 221.15 or 330.8.
The frequency equations derived in the present paper have been successfully applied to the

design analysis of fuel rod. As a result, therefore, the frequency equation derived by the present
paper seems to be very useful to evaluate the fuel rod vibration with various boundary conditions.
Especially, when some parametric analyses are needed to modify fuel design, the equation can be a
very easy and useful tool.
Appendix A. Components of matrix jSSijj

SS11 ¼ � 1þ 2
X1
m¼1

O
O� m4

 !
; SS12 ¼ 1þ 2

X1
m¼1

ð�1ÞmO
O� m4

 !
;

SS13 ¼ T̄ 0 þ 2p2
X1
m¼1

m2O
O� m4

 !
; SS14 ¼ � 2p2

X1
m¼1

ð�1Þmm2O
O� m4

 !
;

SS15 ¼ SS16 ¼ SS17 ¼ SS18 ¼ 0;

SS21 ¼ 1�
2R̄0

p2
X1
m¼1

m2

O� m4

 !
; SS22 ¼

2R̄0

p2
X1
m¼1

ð�1Þmm2

O� m4

 !
;

SS23 ¼ R̄0SS36; SS24 ¼ �R̄0SS12; SS25 ¼ SS26 ¼ SS27 ¼ SS28 ¼ 0;

SS31 ¼ SS32 ¼ SS33 ¼ SS34 ¼ 0; SS35 ¼ SS12; SS36 ¼ �SS11; SS37 ¼ SS14;

SS38 ¼ T̄L þ 2p2
X1
m¼1

m2O
O� m4

 !
;

SS41 ¼ SS42 ¼ SS43 ¼ SS44 ¼ 0; SS45 ¼
2R̄L

p2
X1
m¼1

ð�1Þmm2

O� m4

 !
;

SS46 ¼ 1�
2R̄L

p2
X1
m¼1

m2

O� m4

 !
; SS47 ¼ �R̄LSS12; SS48 ¼ R̄LSS11;

SS51 ¼
X1
m¼1

m sinðmpx1Þ
p2ðO� m4Þ

	 

; SS52 ¼ �

X1
m¼1

ð�1Þmm sinðmpx1Þ
p2ðO� m4Þ

	 

;
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SS53 ¼ �
X1
m¼1

m3 sinðmpx1Þ
ðO� m4Þ

	 

; SS54 ¼

X1
m¼1

ð�1Þmm3 sinðmpx1Þ
ðO� m4Þ

	 

;

SS55 ¼ �SS51; SS56 ¼ �SS52; SS57 ¼ �SS53; SS58 ¼ �SS54;

SS61 ¼
X1
m¼1

2m2 cosðmpx1Þ
p2ðO� m4Þ

	 

; SS62 ¼ �

X1
m¼1

2ð�1Þmm2 cosðmpx1Þ
p2ðO� m4Þ

	 

;

SS63 ¼ � 1þ
X1
m¼1

2O cosðmpx1Þ
ðO� m4Þ

 !
; SS64 ¼ 1þ

X1
m¼1

2ð�1ÞmO cosðmpx1Þ
ðO� m4Þ

 !
;

SS65 ¼ �SS61; SS66 ¼ �SS62; SS67 ¼ �SS63; SS68 ¼ �SS64;

SS71 ¼
X1
m¼1

2R̄am2 cosðmpx1Þ
p2ðO� m4Þ

� SS75

 !
; SS72 ¼ �ðR̄aSS66 þ SS76Þ;

SS73 ¼ �ðR̄aSS67 þ SS77Þ; SS74 ¼ ðR̄aSS64 � SS78Þ;

SS75 ¼
X1
m¼1

2m3 sinðmpx1Þ
pðO� m4Þ

	 

; SS76 ¼ �

X1
m¼1

2ð�1Þmm3 sinðmpx1Þ
pðO� m4Þ

	 

;

SS77 ¼ �
X1
m¼1

2mpO sinðmpx1Þ
ðO� m4Þ

	 

; SS78 ¼

X1
m¼1

2ð�1ÞmmpO sinðmpx1Þ
ðO� m4Þ

	 


SS81 ¼ SS85 �
X1
m¼1

2T̄am sinðmpx1Þ
p3ðO� m4Þ

	 

; SS82 ¼ SS86 þ

X1
m¼1

2T̄að�1Þ
mm sinðmpx1Þ

p3ðO� m4Þ

 !

SS83 ¼ OSS87 þ
X1
m¼1

2T̄am3 sinðmpx1Þ
pðO� m4Þ

	 
 !
;

SS84 ¼ OSS88 �
X1
m¼1

2T̄að�1Þ
mm3 sinðmpx1Þ

pðO� m4Þ
; SS85 ¼ � 1þ

X1
m¼1

2O cosðmpx1Þ
ðO� m4Þ

 !
;

SS86 ¼ 1þ
X1
m¼1

2ð�1ÞmO cosðmpx1Þ
ðO� m4Þ

 !
; SS87 ¼

X1
m¼1

2p2m2 cosðmpx1Þ
ðO� m4Þ

	 

;

SS88 ¼ �
X1
m¼1

2p2ð�1Þmm2 cosðmpx1Þ
ðO� m4Þ

	 

;

where T̄ 0 ¼
T 0L

3

EI
; T̄a ¼

TaL3

EI
; T̄L ¼

TLL3

EI
; R̄0 ¼

R0L

EI
;
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R̄a ¼
RaL

EI
; R̄L ¼

RLL

EI
; o2n ¼

EI

rA

mp
L

� �4
; O ¼

rAL4

p4EI
o2 ¼

b4

p4
:

Appendix B. Components of matrix jCTCijj

CTC11 ¼ 2
X1
m¼1

m3p3

m4p4 � b4
sin

mpL1

L
; CTC12 ¼ �2

X1
m¼1

mp

m4p4 � b4
sin

mpL1

L
;

CTC13 ¼ �2
X1
m¼1

ð�1Þmm3p3

m4p4 � b4
sin

mpL1

L
; CTC14 ¼ 2

X1
m¼1

ð�1Þmmp

m4p4 � b4
sin

mpL1

L
;

CTC15 ¼ �2
X1
m¼1

m3p3

m4p4 � b4
sin

mpL1

L
; CTC16 ¼ 2

X1
m¼1

mp

m4p4 � b4
sin

mpL1

L
;

CTC17 ¼ 2
X1
m¼1

ð�1Þmm3p3

m4p4 � b4
sin

mpL1

L
; CTC18 ¼ �2

X1
m¼1

ð�1Þmmp
m4p4 � b4

sin
mpL1

L
;

CTC21 ¼ � 1þ 2
X1
m¼1

1�
m4p4

m4p4 � b4

	 

cos

mpL1

L

 !
;

CTC22 ¼ �2
X1
m¼1

m2p2

m4p4 � b4
cos

mpL1

L
;

CTC23 ¼ 1þ 2
X1
m¼1

1�
m4p4

m4p4 � b4

	 

ð�1Þm cos

mpL1

L

 !
;

CTC24 ¼ 2
X1
m¼1

ð�1Þmm2p2

m4p4 � b4
cos

mpL1

L
;

CTC25 ¼ 1þ 2
X1
m¼1

1�
m4p4

m4p4 � b4

	 

cos

mpL1

L

 !
;

CTC26 ¼ 2
X1
m¼1

m2p2

m4p4 � b4
cos

mpL1

L
;

CTC27 ¼ � 1þ 2
X1
m¼1

1�
m4p4

m4p4 � b4

	 

ð�1Þm cos

mpL1

L

 !
;
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CTC28 ¼ �2
X1
m¼1

ð�1Þmm2p2

m4p4 � b4
cos

mpL1

L
;

CTC31 ¼ 2
X1
m¼1

1�
m4p4

m4p4 � b4

	 

mp sin

mpL1

L
;

CTC32 ¼ 2
X1
m¼1

m3p3

m4p4 � b4
sin

mpL1

L
;

CTC33 ¼ �2
X1
m¼1

ð�1Þm 1�
m4p4

m4p4 � b4

	 

mp sin

mpL1

L
;

CTC34 ¼ �2
X1
m¼1

ð�1Þmm3p3

m4p4 � b4
sin

mpL1

L
;

CTC35 ¼ �2
X1
m¼1

1�
m4p4

m4p4 � b4

	 

mp sin

mpL1

L
;

CTC36 ¼ �2
X1
m¼1

m3p3

m4p4 � b4
sin

mpL1

L
;

CTC37 ¼ 2
X1
m¼1

ð�1Þm 1�
m4p4

m4p4 � b4

	 

mp sin

mpL1

L
;

CTC38 ¼ 2
X1
m¼1

ð�1Þmm3p3

m4p4 � b4
sin

mpL1

L
;

CTC41 ¼ 2
X1
m¼1

1�
m4p4

m4p4 � b4

	 

m2p2 cos

mpL1

L
� T̄a

m3p3

m4p4 � b4
sin

mpL1

L

	 

;

CTC42 ¼ � 1þ 2
X1
m¼1

1�
m4p4

m4p4 � b4

	 

cos

mpL1

L
� T̄a

mp

m4p4 � b4
sin

mpL1

L

	 
 !
;

CTC43 ¼ �2
X1
m¼1

1�
m4p4

m4p4 � b4

	 

ð�1Þmm2p2 cos

mpL1

L
� T̄a

ð�1Þmm3p3

m4p4 � b4
sin

mpL1

L

	 

;

CTC44 ¼ 1þ 2
X1
m¼1

1�
m4p4

m4p4 � b4

	 

ð�1Þ4 cos

mpL1

L
� T̄a

ð�1Þmmp

m4p4 � b4
sin

mpL1

L

	 
 !
;
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CTC45 ¼ �2
X1
m¼1

1�
m4p4

m4p4 � b4

	 

m2p2 cos

mpL1

L
;

CTC46 ¼ 1þ 2
X1
m¼1

1�
m4p4

m4p4 � b4

	 

cos

mpL1

L
;

CTC47 ¼ 2
X1
m¼1

1�
m4p4

m4p4 � b4

	 

ð�1Þmm2p2 cos

mpL1

L
;

CTC48 ¼ � 1þ 2
X1
m¼1

1�
m4p4

m4p4 � b4

	 

ð�1Þm cos

mpL1

L

 !
; CTC51 ¼ 1;

CTC52 ¼ CTC53 ¼ CTC54 ¼ CTC55 ¼ CTC56 ¼ CTC57 ¼ CTC58 ¼ 0;

CTC61 ¼ CTC62 ¼ CTC63 ¼ CTC64 ¼ CTC65 ¼ CTC66 ¼ 0; CTC67 ¼ 1;

CTC88 ¼ 0; CTC71 ¼ � 3� 2
X1
m¼1

m4p4

m4p4 � b4

 !
; CTC72 ¼ �2

X1
m¼1

m2p2

m4p4 � b4
;

CTC73 ¼ 1þ 2
X1
m¼1

1�
m4p4

m4p4 � b4

	 

ð�1Þm; CTC74 ¼ 2

X1
m¼1

m2p2

m4p4 � b4
ð�1Þm;

CTC75 ¼ CTC76 ¼ CTC77 ¼ CTC78 ¼ 0; CTC81 ¼ CTC82 ¼ CTC83 ¼ CTC84 ¼ 0;

CTC85 ¼ � 1þ 2
X1
m¼1

1�
m4p4

m4p4 � b4

	 

ð�1Þm

 !
;

CTC86 ¼ �2
X1
m¼1

ð�1Þmm2p2

m4p4 � b4
; CTC87 ¼ 3� 2

X1
m¼1

m4p4

m4p4 � b4

 !
;

CTC88 ¼ 2
X1
m¼1

m2p2

m4p4 � b4
:
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